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Theory of the martensitic transformation in cobalt
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A phenomenological theory of the martensitic fcc-hcp transformation is proposed and applied to the illus-
trative example of cobalt. The fcc and hcp structures are shown to result from different ordering mechanisms
from a disordered polytypic structure and to be intrinsically faulted. The three, fcc, hcp, and disordered
polytype, structures are inserted in the framework of the segregation process which leads to the formation of
close-packed structures from the melt. The essential features reported for the fcc-hcp transformation in cobalt
are explained within the preceding model, namely, the asymmetry of the interphase region, the phonon spec-
trum, the 5-shape of its specific heat anomaly, and the existence of an intermediate modulated structure. The
property of the transformation enthalpy to be different on heating and cooling is related to the different degree
of order of the hcp and fcc structures. The partial dislocation mechanism currently assumed for the transfor-
mation is deduced from the secondary shear strains involved at the transformation.
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[. INTRODUCTION growth processes. It shows a shape memory type effect
which concerns the relative orientation of the fcc and hcp
Face centered cubitfcc) and hexagonal close packed structures when cycling across the transitibrurthermore
(hcp structures coexist in the pressure-temperature phadbe transformation temperatufig,, as well as the amount
diagrams of more than twenty elemental crystdidut only ~ and extent of transformed structures is drastically affected by
for six of them(He, Fe, Co, Tl, Pb, and Yls there a direct various factors, namely, the external streSsesthe alloying
transition between a fcc phase and the simplasp) close-  with soluble atomgsuch as Fe and Nf' or with metallic and
packed bilayer structure. Hence in the lanthanides Sm, Gdjonmetallic elements of limited solubility ranggThere ex-
Tb, Dy, and Y, the fcc and hcp phases are separated bigt however, a number of features which makes the transition
higher-order polytypes, namely, the double Hdhcp and in Co different than the martensitic transformations found,
nine-layered rhombohedra®R) structures. In other lan- for example, in bcc-based metals and alloys. Thus the trans-
thanides(La, Ce, Pr, Nd, Pmand some heavy actinides formation, which takes place &t,=695 K at ambient pres-
(Am, Cm, Bk, C the hcp phase is absent and only thesure is weakly first order, as attested by small changes in
fcc-dhcp and fec-triple heyithep) transitions take place. In - enthalpy @h=113 calmol'! on heating and volume
Cs and Xe the high-pressure hcp and low-pressure fcc phasésV/V=3.3x10"3) and by a sharp singularity of the spe-
are separated by intermediate structures. cific heat'® On the other hand no significant softening of the
With the exception of cobalt all the elements displaying arelevant phonon branches could be obset(&din the low-
fcc-hep transition possess also a body centébed phase in  temperaturéhcp) or high-temperaturéfcc) phases but only
their phase diagram. For example, in Fe, Tl and Yb the bca slight decrease of the,, hexagonal shear constiht!
phase occupies a large region of the phase diagram beinghen approaching ., from the hcp phase. There is also a
adjacent to both the fcc and hcp phases. In these three elstrong tendency to disordering of the structure which is re-
ments the fcc and hcp structures can therefore be deducdiécted in the dependence with temperature of the width of
from their parent bcc structure via the Bain deformatiand ~ some diffraction line¥ and anomalous diffuse scatterifig
Burgeré mechanisms as described in Refs. 5 and 6. In conalong certain directions in reciprocal space which can both
trast the phase diagram of cobalt, which has been recentlye interpreted in terms of stacking faulfsin the region of
explored up to 100 GPa and 3000(Ref. 7) shows no pres- coexistence of the two structures arouhRg the disorder is
ence of a bcc phase. Accordingly the preceding mechanisimaso manifested in pure cobalt by the appearance of a modu-
cannot be invoked for describing its fcc-hep transformationlated structur€ and in cobalt alloys by the stabilization of
This remark holds foPHe and“He for which the bcc phase high-order polytyped®2°
occupies a restricted region of the corresponding phase Many theoretical modet&?’~*°have discussed the fcc-
diagrams$ being exclusively in contact with the hcp phase, hcp transformation in metals and alloys. Most of tRém
far from the region of stability of the fcc phase. In Pb thefocus on the transformation mechanism between the two
high-pressure bcc phdsseems also to have no contact with close-packed structures described in terms of nucleation and
the fcc phase but the phase diagram is still largely unexgrowth processes. They differ in the details of the nucleation
plored. process and in the way the partial dislocations propagate
The fcc-hep transformation in Co is currently designatedirom plane to plane. Other approaches are formulated in
as martensitit ™ due to its diffusionless character, its con- terms of shearing mechanisth¥%® or Fermi-surface
siderable thermal hysteresis and the typical nucleation anthechanisms taking into account the average electron concen-

0163-1829/2001/64.4)/14410417)/$20.00 64 144104-1 ©2001 The American Physical Society



TOLEDANO, KREXNER, PREM, WEBER, AND DMITRIEV PHYSICAL REVIEW B64 144104

cupy the free spacings left by the preceding layer related to
positions of theB or C type. The stacking order of the layers
determines the type of close packed structure. For the equira-
dii (R) close packed spheres shown in Fige)in addition to

the conditiona,=b,=2R wherea,, andb,, are the hexago-

nal lattice parameters one has additional conditions reflecting
the close packing in the third dimensiocy,=a;,\/8/3 for a
two-layer stacking structurec,=a,\/6 for a three-layer
structure, etc.

The two-layeredhcp and three-layeredfcc) structures
represent the simplest close-packed configurations of hard
sphere atoms. In their unit cells shown in Fig&)land Xc)
each layer is shifted with respect to the adjacent layer by
a3 in the[120], crystallographic direction. The basic
vectors of the hcp unit cell is expressed in functions of the
basic vectors of the fcc rhombohed(ptimitive) unit cell as
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FIG. 1. (a) Close packing of hard spheres. Projection of the
layers in the(001) plane. Centers of the circles are Anposition,
small solid dots represent th& position and small open circles
denote theC position. (b) Two-layered hcp structurgc) Three-
layered fcc structurdd) Unit-cell of the disordered polytype struc- 2
ture within the hcp structurge) Unit-cell of the disordered poly- ap=b.—c.,b,=a.—c., c,=z(a.+b.+c.). 1)
type structure within the fcc structure. 3

From Eqg.(1) or directly from the hcp and fcc structures,

; 7-39
tration per atorrf ‘None of the prop(_)se_d models_ allow 10 516 can deduce that the maximal substructure common to the
give a comprehensive picture of the intricate variety of ex-

: o hcp and fcc structures is composed by a monolayer hexago-
perimental features reported for the transformation in cobal b P y y g

The aim of the present work is to propose a unified descri tpal structure which has the simple hexagonal symmty

. ) L and unit cell volumevV=V,/6=V_ /3 whereV, andV,. are

tion of this transformation in the framework of the segrega- h . | fthe h df i+ cells. Fi

tion process which leads to the formation of the fcc and hct e respective volumes of the hcp and fcc unit cells. Figures

close-packed structures from the melt. The observed propep'rl-(d) and 1) show the unit cell of the substructure which we

: : o denominate thé& structure within the hcp and fcc structures.

ties of C_o will be de_duced from the ordering nature of theOne can see from these figures thattt P it cell is filled by

segregation mechanism and from the corresponding symm 73 atoms, L.e., it corresponds to an occupaBeyl/3 for the

try of the transformation order-parameter defined in terms o structuré 'T.r'1is fractional number must be understood as

the ;;roper cl:ritical variableds an<fj 'Itlhermodynamic functions. follows: In é given menolayer the atoms occupy the crystal-
The article is organized as follows. In Sec. Il we give a . - )

phenomenological description of the crystallographic andographlc position &): (000 and only one among the three

thermodynamic properties which characterize the fcc-hc;?os't'onSA’ B, andC is occupied. In the next layer the atoms

transformation extending the ideas developed in Ref. 40 an annot be again in positioh but only in positions or C, say

insert this description in a theoretical approach to the segrec' l;ng]igoflg)rmn?ﬂ'iﬁﬁ;:hﬁgré\/\l’" tﬁ;ﬁ;pgrtgteagﬁﬁmfoﬁ;
gation of close-packed structures from the melt. We then” : y 9

illustrate the preceding model in the case of cotéc. 1. sponds to a statistically disordered polytype structure in

In Sec. IV we summarize our results and conclude by underWhICh theA, B, andC sites are equivalent, thed positions

I . ; . : : being occupied with equal probabilities 1/3 by atoms. We
lining the properties which differentiate ordering-type mar-_": g
tensitic transformations. will now assume that the polytype structure is theparent-

structurefor our description of the fcc-hcp transition. With
that goal let us write the basis vectors of the hcp and fcc unit

II. PHENOMENOLOGICAL THEORY OF THE FCC-HCP cells in terms of the basis vectorg, (b, ,c;) of theL struc-
TRANSFORMATION ture:
A. Crystallographic descriptiqn and order-parameter a,=2a, —b,,b,=a +2b,, c,=2c_, 2)
symmetries
Although a close packing of atoms represented by hard a=a +b +c,be=—a +c, cc=—b +c.. 3

spheres may be realized in several w&y& in real crystals

close packing always corresponds to a layered configuration From Egs.(2) and(3) one can deduce the wave vectors
which gives the possibility of isolating planes of atoms pack-expressing the breaking of the translational symmetry at the
ing in closest manner. These planes are stacked according Y§tual L—hcp andL—fcc transitions. One finds, respec-
some rules of filling up space and they represent hexagondively, kis=3(af +bf)+3c and ko= 3(af +by +cf),
packing of spheres each of which is in contact with six nearwherea;" , by , andc] are the reciprocal lattice vectors of the
est neighbordpoint A in Fig. 1(a)]. In the centers of the L-hexagonal Brillouin zone. The notation of thevectors
triangles formed by neighboring atoms exist geometricallyrefers to Kovalev’s table®

equivalent sites denotd@landC in Fig. 1(a). A spatial close (a) The L-hcp transitionThe wave vectok,s; associated
packing is realized when each of the successive layers ogvith the L-hcp transition coincides with thiEl point of the
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hexagonal Brillouin zone boundaf{lts invariance group is

G(ky9) =Dg,. Hence the stak}s; has two branche&l,=
—ki5=(477/3aL,0,7-r/cL). Since the small irreducible repre-

sentation IR7; of D3, which describes the permutation of
atoms in thd. structure is the identity IR, one can deduce the
2X 2 matrices given in the Appendix, which generate the IR
71(ks) of the Déh space group. Using the transformation
properties of the matrices forming (kjs) within a standard
Landau procedufé one obtains the possible symmetries of
the phases induced by (kis) and the equilibrium values of
the corresponding two-component order parameter denoted
(717m2). Three different symmetries are found) Dg,(V

X 6) for 7,=7,#0, (i) Dg,(VX86) for 7,=—7,#0, and
(iii) D%h(vx 6) for n,# 7,#0. The second solution coin-
cides with the sixfold unit cell and space group of the hcp
structure. Accordingly thelL-hcp transition corresponds
to the equilibrium values of the two-component order
parameter

n1=— 1= n#0. (4)

At the crystallographic level therdering mechanism tak-
ing place at the_-hcp transition corresponds to the splitting

of the initial onefold site (a) into three twofold positions:

2(b): (000,08), 2(c): +(553), and 2d): +(553). Since in FIG. 2. Connection existing between the degree of occupancy of

the initial disorderedL-structure only one (B position  the latent phase and tHe3,— O; increase in symmetry. Ita) a

among three is occupied in the ordered hcp structure onlyourfold rotation exists only if atoms of th¥ type are absent. The

one of the twofold positions will be occupied by two atoms. Y position corresponds to the transformation of ¥hgosition under

Actually as a result of close packing the hard sphere systente effect of a fourfold rotation(b) Projection on thg111) cubic

of atoms will occupy either position(® or 2(d) since they plane of the fcc structure.

are crystallographically equivalent. The resulting two-

layered hcp structure will fulfil the standard ratio for the unit 5 coincidence of the rhombohedia, and cubicO} space

cell parameters,/a,= 8/3=1.63. groups let us clarify the crystallographic aspect of the
(b)The L-fcc transition.The wave vectok,q associated DL (L)—D34(Vx3) ordering mechanism. In this mecha-

with the L-fcc transition is Iocatecimon the edgeKH-line)  npism the initial 1a) position splits into 1a) and Z0):

of the hexagonal -Brillouin zone™ Its invariance group is + (111y positions. Since atoms occupy only one of tie) 1

G(ki) =Cay .431There£ore the stakj, has fourgbrancrles, positions in the rhombohedral structure they are localized at
which are kip=—kijo=(47/3a,,0,2m/3c,) kio=—Kio |attice nodes but not on sites located inside the unit cells.
=(4m/3a.,0,~2m/3c). From the identity IR ofCs, one  Thjs is illustrated in Figs. @) and 2b) showing that within
can construct the %4 matrices generating the IR (kjg)  the preceding unit cell the position denotédfor example,
which are given in the Appendix from which the possibleis empty. Consequently additional fourfold rotations are cre-
symmetries induced by, (kj,) and the equilibrium values of ated in the structure which are connected with the sixfold
the corresponding four-component order parameter denotedtations of the L structure by {C%/00c, } acting as
(£1,42,¢3.,44) are obtained. One finds seven different sym-{C2|00c, }. This correspondence is indicated in Figa)2in
metries:(i) Dg,(VX9) for {1={,= 3= {4, (ii) C3,(VX9)  which the effect of a fourfold rotation transforms the position
for {17 {o# L3# {4, (iil) ng(ng) for {1=105,{3=€* {4, X into the positionY which is empty. The coincidence
(iv) D34(VX3) for {1={,#0,{3={4=0, (v) C3,(VX3) D340} requires also that the close-packing condition
for {1=0,=0,{3% ¢4, (Vi) D3,(VX9) for {;=¢5 and{, ¢, /a_ =2 which is equivalent to a 60° angle between the
= {4, and (vii) cgv(v>< 9) for {1#0,{,={(3=¢*{,4. Only  basis vectors., b., andc, of the fcc rhombohedron should
two of the preceding solutionsv and V) involve a threefold be satisfied. It is notorious that a rhombohedral structure pos-
multiplication of theL unit cell in agreement with Eq3). sessing equal angles between its basis vectors has the fcc
The solution iv actually coincides with the fcc symmetry cubic symmetry fora=60°. Note in this respect that the
(Oﬁ,Zzl) due to the specific crystallogeometrical condi- Oﬁ—>D§d lowering of symmetry corresponds to a ferroelastic
tions fulfilled by theL unit cell which are(i) a 1/3 occupancy transitior!® involving the spontaneous shear strain= €yz-

of the L structure by the atoms an@) a ratioc, /a, =\2  Therefore the reverse mechani@ﬁdﬁoﬁ assumed in our
corresponding to a close-packed structure. In order to undedescription of the.— fcc transition requires to take into ac-
stand why the fulfillment of the preceding conditions leads tocounte, as a secondary order parameter coupled to the pri-
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a Aa, C nbl
1
1ECF) od) I I FIG. 3. Phase diagram corresponding to the
m 5 2 k order-parameter expansion expressed by (Eyg.
ki 1 (@ when A=4agb,—c?<0 and ¢>0 with g
3 A I(FCC) 3a,7| 9 ¢ >0. (b) and(c) Existence of two disjuncted re-
e M “4a, gions of stability for the fcc phase denoted Il and
Il", which are separated by a forbidden interval.
. e N f (b) ¢>0, (c) c<0. (d) Phase diagram foA <0
IHCP) |71 o N . % andc>0 but with two distinct regions of stability
B 5 I .| o 4 10 for the fcc phase(e) and (f) Phase diagrams for
B 2 C -~ S, s 5 A>0 and(e) c>0 or (f) c<0. Phase Il splits in
i 0 b, 0 2 b, 0 2 'bl this case into separated regions of stability
= Hee) 7 2 CNL I and llI"). In all the phase diagrams only the limit
4/ "/A IFCC) 4/ I il b Z of stability lines are represented.
8 3 mr
6
mary (¢;) order parameter in order to adjust tbg, rhom- {(2a,+3a,{+4agl’+2cn?) =0, 7
bohedron to its close-pack@ﬁ form. Accordingly thel-fcc
transition is associated with the nonvanishing components of n(2by+4b,n?+2ct?)=0 (8)
the four-component order parameter: have been discussed by RocffaThey lead to different
. phase diagram topologies depending essentially on the signs
{1=0={#0 5

of ¢, a,, and A=4a3b,—c?. Figure 3a) shows the phase
and to an eventual shear straie,( acting as an adjusting diagrams corresponding >0 andA <0 in the plane of the
secondary order parameter. In summary the fcc-hcp transfopoefficients @,,b;) which are assumed to vary linearly as
mation can be interpreted as a transition between two offunctions of the two external variabl@sandP. It contains
dered phases corresponding to different ordering mechdour phases denoted O, I, I, and l11. 0 is thephase obtained
nisms starting from a common disordered polytypic phase ofo" 7=0, {=0. I is the hcp phase forming fay#0, {=0.
hexagonal symmeteréh. In this interpretation the parent Il'is the fcc phase §=0,{#0). lll is a six-layered structure

polytypic phase has been considered as a virtual structupihich corresponds to the mini_mal sgperstructure common to
which is not necessarily stabilized in the system. Its physicaihe hcp and fce structures. This additional stable state results

realization will be discussed in a more precise way infrom the coupling_of the. _two irreducible order p_arameters
Sec. lIC. (7)) and ;) and is stabilized forp#0 (#0. In Fig. 3a)

the boundarieglimit of stability lines) of the L phase with

respect to the hcp and fcc phases are giverbpy 0 and

a, =0, respectively. The limit of stability of the hcp phase
Let us work out the different types of phase diagramswith respect to the fcc phase is also a straight line defined by

involving the fcc and hep phases which can be deduced frorthe equationa;=cb,/2b, and the value of the hcp order

the preceding considerations. The transformation propertigsarameter within phase | is given by= —b,/2b, with b,

of the (%) (i=1,2) and ¢;) (i=1-4) order parameters re- <0, b,>0. The boundaries of the fcc phase Il are deter-

spectively associated with the—hcp andL —fcc transitions  mined by the equations

allow one to construét the following independent invari-

ants: Li=7ni+tns, 11=3L,0, 1;=0+5-3(4L8 {(33,+8a3)=0 and c{+b;=0. 9

+¢538%), 15=3% ¢} where only monomials of degree4

have been taken into account. Using the equilibrium relation- For positive values of one has the situation found in Fig.
ships(4) and(5) between the 6rder garame?er components in3(a) in which the boundaries of the fcc phase correspond to a
P P P arabolic branch and to the, =0 line. In this case the re-

Lhﬁeezg\?ea;:) (:r:;CI pEa;ze SI t,h_e ggrﬁgefjggg II ?\ia;a\?vtﬁigﬁdyl:gﬁjto tig(laon of coexistence of the hcp and fcc phases contains the
d1 y 11— y 127 » 137

. . domain of stability of phase Ill. The topology of the phase
the effective order parameter expansion diagram is more complicated if the value of the fcc order
parameter/ changes its sign. Figures(t and 3c) (corre-
F(T,P,{,7)=Fo(T,P)+ay*+a,*+as( +by 7 + by sponding toc>0 andc<O0, respectively show that in this

+ci2n? (6) case there are two disjunct regions of stability for the fcc
phase denoted Il and’llwhich are separated by a forbidden
in which the lowest degree biquadratic coupling betwéen (unstable interval for the ¢ values —(3a,/4a;)< (<0,
and » has been included;, b;, andc are phenomenologi- wherea, anda; are assumed to be positivee., takinga,
cal coefficients some of which may depend on temperature<0 is equivalent to changing the sign ofin our consider-
and pressure. The corresponding equations of state ationg. Figure 3d) shows the phase diagram corresponding

B. Phase diagrams
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to the same conditione0,A<0), as in Fig. &), but with TABLE I. Antiphase domains corresponding to thencp tran-
two distinct regions of stability for the fcc phase denoted IIsition. (b) Equilibrium values of the two-component order-
and II' which are separated by phase Ill. Note that pha’se |l parameter §,,7,) for each of the six types of antiphase domains
occupies a region of thea¢b,) plane which is adjacent to numbered in columria). (c) Sequence of layers corresponding to
phase Il. Therefore a first-order anti-isostructural transitioreach type of domain(d) Symmetry operations transforming the
lI-11" corresponding to a change in the signfotan occur. domain 1 into the other domaine.= exp{i=/3}, & = exp{2in/3}.
Figures. 8e) and 3f) represent the possible phase diagrams

in which the conditions £>0, ¢c>0) and A>0, c<0) @ (b) (© (d)
hold, respectively. One can see that for such conditions phase 77 CBCB 1C,]000

Il may also split into separated regions of stability deter- o BCBC (Cileu)
mined by different signs of. The effective coupled order cr ABAB {Cl|aL}
parameter expansion given by H@) has the simplest form *77 *77 BABA cy ! +L
which can be taken for describing the phase diagrams assg- @ me {Calac+e
ciated with the ;) and (;) order parameters. More com- e e ACAC {Cif—a}
plex expansions can be assumed that would produce differefit wnen CACA {Cal —aLtci}

topologies of the theoretical phase diagrams. Considering for

example, a sixth degree term in (i.e., a first-orderL-hcp
transition may lead to a situation in which phase Il be- Of the typeAA, BB, or CC. Therefore, the number of al-

comes unstable and only a direct fcc-hcp transition takelowed contacts is limited. Using the standard notdtion
place. Some of the qualitative features of the phase diagranféhich labelsh a hexagonal layer having an identical sur-
shown in Fig. 3 correspond, however, to specific propertie§ounding(e.g.,Bin ABA) andc a hexagonal layer having a
of the fcc-hep transition. In particular Fig(8 shows that Nnonsymmetrical surroundinge.g., B in ABC) one finds
the region of coexistence of the two phases varies with deWo sorts of possible contacts - -hhhchhh .- and
creasing values af, andby, i.e., the discontinuous character * < -hhhcchhh- - which both correspond taleformation
of the transition changes with temperature and pressure ariacking faults!” _ _ _
may reach as it is observed in some fcc-hcp transformations, At the L-fcc transition the underlying change in the point-
a weakly first-order regime. A six-layered structure betweer@foup symmetry Dgn— D3q) and the corresponding three-
the fcc and hcp structure and the antiisostructural phase®ld multiplication of theL unit cell lead to two different

(' and 1) are further remarkable features of the types of domainsti) two orientational domains transforming
phase diagrams represented in Fig. 3. into one another by the lost sixfold rotation afit) three
antiphase domains. Table Il lists the six different types of
C. Stacking faults and domain structure domains and the corresponding equilibrium values of the

four-component order-parametef ). In column(c) of Table

From our proposed approach to the fcc-hep transition O one finds the layer sequences associated with each domain
can deduce that the fcc and hcp structures are mtrmsmallg g..---ACBACB -- for (£,£,0,0) and- - -BACBAG - -

faulted. There are two different origins for the stacking . A
faults. One type of stacking fault which is symmetry inducedfor (£.4,€*,£0,0). Column(d) indicates the symmetry op-

and independent of temperature results form the existence &f a/ic;r?ovrv?ﬁ%th.rﬁ:ng;Tstiggnﬁ;ﬁtedforﬁ?;rét?tgewvig:lhterfé' do-
antiphase and orientational domains which occur at the ™~ ™ P X

L-hcp andL-fcc transitions. Another type oftemperature mains in the fcc structure must preserve the atomic close
dependentstacking fault relates to the ordering character ofpacklng. At variance with the hcp structure one finds two

the order parameters. Let us first analyze the stacking faulttg pes of stacking faults1) deformation-type stacking faults

associated with the domain texture of the phases. Atlthe resulting from the contact between for example, the domains

_hep transition the point group symmetrjbihHDgh) is denoted 1 and 3 in Table II. It gives the layer stacking

not modified but one has a sixfold decrease of the transla-
tional symmetry expressed by E). Therefore antiphase

domains are created which transform into one another by th
translations lost at the transition. Table | lists the equilibrium

TABLE II. Antiphase and orientational domains corresponding
@ the L-fcc transition.(a) Numbering of the domaingb) Equilib-
rium values of the four-component order parametgr,4,,s3,54)
for each domain(c) Layer sequences associated with each domain.

values of the_ tWO-Compone_nt order parametes 4,) for (d) Symmetry operations transforming the first domain into the oth-
each of the six types of antiphase domdiaslumn (b)] as ers. e = expl2i 3}

well as the possible sequences of layers corresponding to

each type of domaifhcolumn(c)]. For example, the first do- @ (b) © d)
main (p—7n) implies a layer sequence of the type

-CBCB: - - whereas the domain<{#7) yields the sequence 1 ss00 ACBACB {C,|000}
---BCBC: - -. The symmetry operators which transform the 2 ese*s 00 BACBAC {C4|b.}
antiphase domain denoted 1 into the other antiphase domaiss e*ses00 CBACBA {Ci|l—a}
are listed in columrid). The domain texture in the hcp phase 4 00ss ABCABC {o,|000
must be compatible with the atomic packing. This excludes 00s&s e*s CABCAB {oja}
certain contacts between the domains that would generat 0 0c&*s ¢ BCABCA {oj|2a.}
sequences
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---ACBABACB - corresponding to---ccchhcce - conjugated functionsb,™ are needed to construct a real
(2) Twining (growth) stacking faults due, for example, to the é

. physically irreduciblg representation.
contacts between the domains denoted 1 and 4. The layer o : ;
S . Let =const be the probability density of atoms in
sequence is in this case-ACBABCABC - - correspond- Polr) ° b Hity >y s !

the isotropic state angdg(r) the corresponding probability

ing to ---ccchcce - -. density | -
; . ensity in a segregated state. The incremépt pg(r
Accordingly the domain structure and the structure of the y greg Pt ps(r)

*m.
domain walls lead to intrinsically faulted hcp and fcc struc—_pO(r) can be expanded on thbkj '
tures the distribution of stacking faults being symmetry in-
duceq. These stacking faults_ are independent frpm Fempera- 5p(r)=2 ™5 DE(r,0,0). (12)
ture, i.e., they cannot be annihilated by external fiéadgng, K] i
annealing, etg.and give rise to a single domain, since we
deal with a probabilistic mechanism with no conjugated The coefficients 7™ define the components of the
field. Another type of temperature-dependent defects can bigfinite-dimensional order-parameter associated with the
found in the close-packed fcc and hep structures originatingransition between the isotropic liquid and a segregated state.
in the nonmaximal character of the order parameters which iSince the transition corresponds to an ordering mechanism
inherent to the assumed ordering-type mechanism. In the dighe 7™ necessarily transform as the IR denofeff, i.e.,
ordered polytype structure each close-packed layer corréhey correspond to the sdty°i} (denoted hereafter as
sponds to a stacking fault. The ordering process Ieadin@nkj}). This results from the following arguments: Any IR of

to the hep and fee structures can be characterized by thg, is constructed from a small IRr() associated with the

number invariance group of one bran¢kayk) of the stark} which
N is G|(1=SO(2).50 Since the “unit cell” of the parent isotro-
d

A=1— N (10 pic state is reduced to a single atom which is invariant under
all the symmetry operations @3 7, Will necessarily coin-

whereN is the total number of close packed layers andis ~ ¢ide for an ordering mechanisﬁgsz_vvith the identity IR of -
the number of stacking fault®ly/N represents the concen- SX2) correospongllngktm=0. D™ is spanned by the basis
tration of stacking faults and one has=0 in the disordered functions &y =Yo-ei"" where the arbitrarily oriented
polytype structure and =1 in the ideal close packed struc- wave-vectork; belong to the same star. It follows immedi-
tures. Intermediate states correspond t0/0<1. The value ately that thenth power invariants of the order-parameter
of A at a given temperature and pressure is determined byomponentsl ,(#7,.) correspond to products of the basis
the number of defects. Far from the transition within thefynctions determijned by the conditiol® ,k;=0. There-
close packed phases, the asymptotic valué ofiill reflect  fore the variational free-energy densiby( 7,) associated
the symmetry induced type of stacking faults. Close to th ith the transition from the isotropic state lWiII contain in-

transitionA accounts as well for the temperature dependenvariants of all powers) except the linear invariarit, (7, )
defects. In the following subsection we formalize such con- - o j
siderations in the framework of a phenomenological descripVNich has been implicitly excluded from E@12) by assum-
tion of the ordering of close-packed structure which is in-IN9 @ lowering of symmetry when going from the isotropic to

spired by a model of segregation in complex flUiThis the segregated state. In particulane or .two cubic invari-
will give a more realistic picture of the parent polytype struc-2Nts ill be present. Hence the transition to the segregated
ture assumed in our approach. state is necessarily first order except essentially at an isolated

point of the phase diagrafi.andau point where the coeffi-
cient of the(single cubic invariant vanishes identically.
IIl. SEGREGATION PROCESS TO CLOSE PACKED Depending on the number of nonvanishing indepenient
STRUCTURES and on the respective equilibrium values of tingj: different
Let us consider the transformation from the melt to asegregated phases can be stabilized below the isotropic state
structure formed by stacked hexagonal layers. The symmetriyhose symmetries correspond to subgroup§ aff E;. Fig-
of the isotropic liquid is the extended Euclidean grdtp  ure 4 show the orientation of the wave vectors involved in
=0(3)x R® whereO(3) is the full orthogonal group ari@®  the formation of the hcp and fcc structures from the melt.
is the three-dimensional group of continuous translationsHence the hcp structure requires three independent wave-

The IR’'s of E5 are spanned by the basis functiths vectors of equal lengthi;| =343 pertaining to a twelve
arms irreducible st4#*° with the following orientations in
(plfjm(r,g,go):eikj-r.Y'm(g,@), (11 the hexigonal recip@cal space showr!n Fig<l4l/[4£ﬂ,

k,//[0,4,1], k3//[4,0,1], k4/I[4,41], kg//[0,4,1],
where thek; are the infinite set of wave vectors ending on akg//[4,0,1], andk;,¢= —k; (i=1—6). The twelve compo-
sphere of given radiui;| and transforming into one another nents of the corresponding order-parameter fulfil the equilib-
by the symmetry operators @(3). TheY;, (m=—1,...,  rium relationshipszy = 7, (i=1-12) which gives rise to
+1) are the spherical harmonics of orderThe infinite-  the effective free-energy density, associated with the
dimensional IR’s ofE; are denoted™. For givenmtwo isotropic-hcp transformation
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i K=[44,1] I a,
kg=10.4,11 k,=[4.4,1] ;

k, 1=[0’4,1] Liquid State

a7=[1,0,0]

ky=[4,0,1] e o
Kk ,=[4,0,1] » i
. a[001] 12 FULLY 4
k3*[‘f:0,}] ordered /<\ . >\ ordered
ke=14,0,1] PARTIALLY N4 PARTIALLY

ordered A ) ordered
o k,=[0.4,1]
kyg=144.1] kg =[0,4,1] FIG. 5. Phase diagram corresponding to the equation of state
k7=[i,ft,1] (18) showing the topology of the partially and fully ordered close-
packed states below the melt.
FIG. 4. Orientation of the wave-vectors involved in the forma-

tion of the hcp and fcc structures from the melt in projection on the d277*
(001) hexagonal reciprocal lattice plane. g k :a’l* 77;: , (16)
dég
F(m)=aymi+ammitagnt - . (13

where 7 is the eigenfunction corresponding to the eigen-

The segregation of a fcc structure involves an eight-armed&!ue ay at which the solutiony,(£,)#0 branches off the
star whose branches aré. ko ki k //[ZZT] solution 7, (0)=0. Taking into account the boundary condi-
o n2r B3 ReTLTT b tions defining the initial isotropic stafen,(0)=0] and the

kg//[0,4,1], ke=—Ks, k15=[0,0,3, andky,=—kis. One gy segregated(ordered state[ 7 (1)=1] one finds the
has again for the eight components of the correspondingsympiotically exact solutiof, in the vicinity of a;=a*
order-parameter:n = 77, (i=1-8), i.e. the free-energy | nichis expressed as
density associated with the formation of a fcc structure from
the melt has the same effective form expressed by(Eg). K|
The ordering process which leads to the formation of hcp 7(€k) = Tma S'”g &k
and fcc structures proceeds via the formation of lamellas
(plateg of different thicknes® with a progressive coales- where the amplitudeyis to be determined by the nonlin-
cence of the neighboring lamellas. One can therefore infeear terms in Eq(15) and depends on the coefficiengsa, ,
the existence below the melt of segregated regions in whiclal), a,, as, ... . Theperiodic dependence expressed by
the layers form short range sequenc¢esy., hcp or fcc se-  Eq. (17) has two levels of interpretation in terms of the crys-
guencepalternating with nonsegregated regions in which thetal structure. It shows on the one hand, that in the ordering
layers are randomly stackedisordered polytypgsLet us  process the crystal stratifies periodically forming successive
denoteé, the normalized probability for a given layer to be stacked regions in which on the other hand, there is a
in a segregated region in the direction defined bykilvector  sinusoidal-type variation from partially ordered to fully or-
and assume the order-parametgrto be a function of¢, . dered subregions. Introducing the functigp(&,) given by
The explicit form forz, (&) for a given segregated structure, Eq. (17) in the effective free-energy densif( z,) one gets
can be obtained by minimizing the thermodynamic potentiaby minimizing F with respect ta&, the equation of state

: 17

I

| Fineorravmonde, s nm

(a,+ 37 +4az7?)=0. (18)
where the integral is over a volume in t§g spaceF is the
free-energy density given by Eq13) and the Ginzburg
g-invariant accounts for the fluctuations pf with respect to
&, . One gets the equation of state

In addition to the isotropic(disordered state
=0 for ¢&=0) one obtains the fully segregatedr-
dered state fordn, /9&,=0, i.e., for|cos@@/2)&,]=0 which
yields ¢&,=1. The partially segregated state corresponds to
5 the equilibrium valuesy, :
d“
dé

When the right-hand expansion is restricted to the third
power Eq.(15) coincides with the general elliptic equattdn  In contrast to the fully ordered state which coincides with a
which can be solved exactfy More generally the bifurca- fixed limit value ofé£=1 the & values associated with par-
tion from the solution#,(0)=0 which corresponds to the tially ordered regions vary with the phenomenological coef-
isotropic state, to the solution (&) #0 corresponding to a ficients of the free-energy density, i.e., they vary with tem-
fully or partially segregated state can be obtained by linearperature and pressure.
izing Eq. (15) around the valuey,(0)=0.° One gets the Figure 5 shows the phase diagram associated with the
second-order linear differential equation equation of stat€18) assuming thahs is positive. Thus, the

3 , 3
g =1t 5 Mt 2837t (15)

3a,*(9a5—32a;a;)'?
8as

o
nﬁzsm§§§= - (19
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partially and fully segregatetbrdered states which display A. Specific features of the transformation in Co

an identical(e.g., hcp or fcg s_ymmetr_y are separat(_ad by The hcp@r or &) —fcc(B or v) transformation in Co
lines of topological transforn_wguons wh|ch are de_termlned bytakes place around,,=695 K at ambient pressure more
the property that the_probablllty( reaches its maximal valu_e than one thousand degree below the melting transitibn (
§&=1. The two partially and fully ordered states bounding _ 173 K) 2 With increasing pressure up to above 70 GPa,
such lines can be reached from the isotropic state across firg{e hcp-fce transition line remains almost parallel to the
order transition lines and meet at a three-phase point denotgfle|ting line’ The fact that the fcc structure is always stable
N; (or Ny) in Fig. 5. Note that close to the Landau pol  above the hcp structure has been attributed to the presence of
the isotropic to ordered state transformation is weakly firsinagnetism which favors the hcp phase as a ground %téte.
order. Note also that each segregated region possesses a syDespite the loss of group-subgroup relationship between the
metric analog corresponding to an opposite sign7efé), symmetries of the phases which typifies reconstructive phase
i.e., each stable state has an anti-isostructural analog. Thensition§* the transition in Co has a weakly discontinuous
existence of antiisostructural states has been already noted (first-orde) character. This is attested by the small jump in
the phase diagrams of Figs(b3, 3(c), and 3d). enthalpy (\h~113 calmol! on heatin§® and volume
From the preceding results one can infer a qualitativelAV/V=0.329%)® involved atT,, and by a relatively small
scheme for the segregation process leading to the formatidmysteresis of about 20 K at ambient presstirét. is also
of close-packed structures below the melt. In the partiallyreflected in the close relationship between the structural fea-
ordered state shown in Fig. 5 the crystal is organized in aures of the two phasé&®®namely,(1) the distance between
periodic array of stacked domains in which lamellas of or-the close packed planes varies only by about 0.3% at
dered (hcp or fcg structure are surrounded by disorderedboth structures displaying the almost ideal close packed rate
sequences of close packed polytypes. On cooling and ap/a=1.623,(2) the same atomic coordination exists for the
proaching the fully ordered state the fraction of disorderedirst and second nearest neighbors, &Bidthe fcc and hcp
sequences of layers reduce in each domain increasing thattices reversibly connect with the epitaxial relationships
thickness of the lamellas, and simultaneously the neighbore111y /(001 e, and[ 112]ice//[120]ncp-

ing domains tend to coalesce. At the topological transition  The main distinctive feature of the transformation in Co is
the fusion of the domains is achieved and the _pha_se ithe strong asymmetry of the feehcp and hep-fec thermo-
formed by an ordered close packed structure. This picturgynamic paths which manifests in the following properties:
provides a justification and' an interpretation of the dISOI’-(i) The average value of the transformation enthalpy is
dered polytype structure which has been assumed from symgitterent on heating (113 calmot) and cooling
metry consideration&Sec. IIA) to be the parent structure for (84 cal morl)_as (i) The hep-fcc transformation is al-
the fcc and hcp structures. Let us stress that for a realistiﬁ,ays complete but the reverse fehicp transformation is
description of the close packed structures the picture has tpcomplete: even at room temperature weak reflections of the
be completed 'by takmg.mto account the existence of stackrc strycture are still preseniii) The dhcpe’ phase found
ing faults as discussed in Sec. Il C. o at high pressures stabilized on quenching the fcc phase but
Consequently the fcc-h_cp transformation WI” be favored; ot on heating the hcp phasév) The disorder behavior of
if the system is in the partially ordered state since the coher,,-]Cp and fcc Co differ greatRf The fcc phase just above,
ency stresses between the two structures will be reduced. |8 \\ell ordered. In contrast a stacking disorder is always

contrast the transformation will take place more abruptly,.ocent in the hcp phase even during the early stages of the
when approaching the fully ordered state. This is attested bit,nstormation. This is attested by the observation of diffuse
the form of the region of coexistence between the f¢¢ aneaks along thg10s] hep direction which are not detected
hep structures found for example in EaPr® and NA° e tee structurd? Analysis of the Debye-Waller factor
which merges at high temperature and enlarges at low Mg eais no anomaly in the hcp phase but an increase of the
perature, going from weakly first-order to a strongly f|r§t— atomic square amplitude in the fcc phase on approaching
order regime. To our knowledge the fcc-hep transformatlorhom above?(v) The fcc and hep precursor regimes are also
in “He is the only counterexample to such a behavior, I.€.gifferent?® In the hcp phase small but distinct preformed
the region of coexistfence between the two phases become§pic jamellae with a volume ratio of 1/1Q@cc/hep exist
Mmore narrow on Cooog'lng from abou_t 30to 14 Kas found by, belowT,, and start to grow at 20 K below,,. Some ten
Fran and Daniel§ H‘?W?Ve“ this exception can be ex- degrees aboveé,, small hcp ordered packets exist which do
plained by the Nernst principle as assumed by these authorﬁot survive above the hysteresis regfénindependently
from the cubic domains the,, hexagonal elastic constant
decreases some 50 K belofy, by above 27%? but the

corresponding fcc constarft; (C1;— 1o+ Cqq)] Shows no

In this section we show that the fcc-hcp martensitic transequivalen?
formation in cobalt provides a concrete illustrative example Other intriguing features of the transformation in Co are:
of the general considerations developed in Sec. Il. The ed1) the form of the specific heat anomaly which shows a
sential experimental features of the transformation aresharp increase from both sides Bf, with almost the same
interpreted in terms of its reordering and reconstructiveslope®’ at variance with the current shape of found at
characters. first-order transformation¥ (2) The absence of soft mode

IV. THE MARTENSITIC TRANSFORMATION IN COBALT
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behaviof* when approaching ,, from the fcc or hcp sides &
despite thec,, anomaly, which is accompanied by an in-
crease of the internal frictiéh and a simultaneous decrease
of the entire branch of transverse acoustic vibration corre- HCP FCC
sponding to the mode. In the following subsections we give a
unified description of the preceding properties in the frame-
work of the theoretical model developed in Sec. Il.

a

v

B. Asymmetry of the interphase region 4 Cp

The fcc-hep transformation has been assumed in Sec. 11 A
to take place between two differently ordered structures cor-
responding to the distinct set of effective order-parameter
components: §, — 7) for the hcp phase and (s,0,0) for the HCP FCC
fcc phase. As shown recently for reconstructive transforma-
tions between Si©polymorph§® when two adjacent phases
are associated to distinct subgroup symmetries of a parent
phase their interphase is asymmetric. Furthermore, if one |
considers a thick phase boundary, i.e., not reduced to one or CplE)
two layers, there exists a surfagg inside the phase bound-
ary which coincides with a minimal deformation. Therefore
the volumes of the phases on each sid&gfwill be differ-
ent and possess the respective symmetries of the phases. On
the other hand, since at the surfé&&gone shifts from one to 0.14 |
another set of order-parameter components,—(7)

—(s,s,0,0), the symmetry of th&,, surface will correspond M
- HCP — FCC

- Y

=

—

(=)}
T

to a cross section of the parent phase. 0.12
The preceding picture applies to the fcc-hep transforma-

tion in Co. It is consistent with the difference of fcc and hcp 0.10 \ ) ) )

volumes involved in the region of coexistence of the two 500 700 9200 T(K)

phases which is much larger on the hcp side than on the fcc

side. TheS,, surface has in Co the simple hexagonal sym- FIG. 6. Temperature dependence(afthe order parameter and

metryDéh of the disordered polytype structure and the phaséb) the specific heat,, across a transition between fully ordered hcp

boundary between the hcp and fcc interphase volumegnd fcc sta_tes(_c) Specific heat anomaly measured at the fcc-hcp

should be macroscopically distorted by the shear stegjn transformation in cobalt from Ref. 67.

required for the formation of the fcc close-packing but not

for the hcp structure.

trast with the upward jump found faxc, on cooling at first-
and second-order transitions between group-subgroup related
phase$® On the other hand, assumirg=ao(T—T,,) and
) ) _ b1=bo(T—Tc2) in Eq. (6) whereay, and b, are positive

dSmcde the transfor:matldon occurs betweedn lt.WO dlfferen(;l_yconstants one finds a finite discontinuity of the entr&sy
ordered structures the or er-p_arameter moduli corresponding e/ o1 ¢ T, which on cooling is given by
to the hcp and fcc phases fulfill the conditions

n S

Stec™ Shcp: bo( 77'r<nax) 2 ao(s lr(nax) 2, (21)

S L (20 Accordingly® Ccp(T) will display a narrows-shaped peak at
MTmax Smax T, as shown in Fig. @®). The two preceding properties of
wherek is the wave vector corresponding to thé direc-  the specific heatAc,=0 and &-shaped peak &) have
tion in the hexagonal Brillouin zone and to the direction  been showff to constitute a typical signature of reconstruc-
in the cubic Brillouin zone. Therefore the temperature depentivé transformations. Such properties are well illustrated by
dence of the effective order-parameter associated with thif1e experimental curve found fag(T) in cobalf” which is
direct fcc-hcp mechanism will display a steplike behavior'eproduced in Fig. @).
represented in Fig.(6). Such behavior is typical of recon-
structive transitions between fully ordered pha¥eBrom D. Degree of order in the fcc and hep structures

the contzzlltlonsz(ZO) one can deduce that the specific heat The antiphase and orientational domains associated with a
=—T(9°F/aT"), whereF is given by Eq.(7) hafc theffgme transition from a disordered polytype structure to hcp and fcc
expression on both sides of Ty: ¢;®=c®=  syructures are listed in Tables 1 and II. It has been stressed
—T(5°Fo/dT?),. Therefore Acy)r—1 =0, i.e., nojump of (Sec. I1Q in our description of the ordering process to close
the specific heat takes place at the transition. This is in conpacked structures that the preceding transitions should occur

C. Specific heat anomaly
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nal[0001]] direction. In addition each cubic variant gives rise
to three types of antiphase domains since the fcc translations
are lost in the hcp lattice as shown by Edj), at the corre-
sponding cell doubling transition. Three antiphase domains
corresponding tABAB: - -, ACAC.---, andCBCB: - - se-
guences are represented in Fig&)#7(e). The full set of
twelve (antiphase and orientationalomains have been ob-
served by Bibring and Sebillekl and Nelson and
Altstettet? whereas the variants associated to only three cu-
bic directions were reported by Gaunt and Christtaand
Babkevichet al.”?

The reverse hcp fcc transformation creates also three
types of antiphase domains which shift the atoms along the
{2110}, //{1010}, and {1210}, //{0110},, directions by
|a,|/\3. Figure 7f) shows one of such cubic domains
corresponding to the sequence of hexagonal planes
ABCABC--. Two other domains ECABCA--
and CABCAB - -) can be derived from the corresponding
shifts of theABCABGC - - structure. Since the cubic phase
corresponds to a sheared rhombohetﬂ]ég symmetry two
types of orientational domains may be produced which trans-
form into one another by thé01) hexagonal plane. How-
ever only one variant is generally observed after the trans-
formation from the hcp phasé.

As shown in Sec. Il C these different symmetry induced
variants should produce temperature indepengaivth or
deformation stacking faults at variance with the temperature
dependent stacking faults inherently associated with a non-
maximal value of the ordering order parameter. The detailed
investigation by Frey and Boys#&hbased on elastic neutron
scattering data on single crystal conclude that the hcp and fcc
phases of Co are disordered by a smaller amount than re-

. . . i i i Y3 0

FIG. 7. (@) and (b): Two among the four cubic orientational POrted in previous studies on powder sampfeSii.e., 2.5%
domains within the hcp structure formed BCBCBG -- se-  for the hcp phase and 0.5% for the fcc phase. The degree of
quences of hexagonal close packed planes in the cubic framewofisorder in the hcp phase is essentially due to growth faults
and corresponding to tH001] hexagonal directionic)—(e) Three ~ and is temperature independent when approaching the trans-
antiphase domains in the hcp structure associated with one cubformation being also not affected by ageing the sample
domain and corresponding #@BAB--- (c), ACAC--- (d), and across the transformation. In contrast the fcc phase, below
CBCB-:-- (d) sequences(f) One of the three type of antiphase and above the transformation is well ordered with no evi-
domains formed at the hepfcc transformation and corresponding dence of growth faults. However, the observatfor that a
to theABCABGC - - sequence of planes. crystal of cobalt cycled through the transformation and re-

maining below 600° C gives on cooling the same single
within periodically stacked domains which form the partially variant in the hcp phase, is in favor of the existence above
ordered state taking place below the melt. Therefore the rethe transformation of symmetry inducédeformation stack-
sulting deformation and growth stacking faults preexist ining faults.
the hcp structures independently from the martensitic trans- Summarizing the reordering process between the hcp and
formation between the two structures. When going from ondcc cobalt phases, assumed in our model takes place from a
structure to the other domains are created originating in thé€ss ordered hcp to a more ordered fcc structure. In the two
loss of symmetry operations related to the absence of grouithases in the region surrounding the transformation the ob-
subgroup relationship between the symmetries of the strucerved(smal) disorder corresponds to symmetry induced
tures. stacking faults which are predominantly of the growth type

At the fcc— hep transformation four types of orientational in the hcp phase and of the deformation type in the fcc phase.
domains are produced which can be deduced from one adhe residual random disorder associated with the ordering of
other by fourfold cubic rotations or equivalently by the four the two close packed structures below the melt is negligible.
{111} cubic planes. In the hcp structures two neighboring
domains differ by 70.5° as found in Refs. 12 and 13. Figures
7(a) and 1b) represent two among the cubic domains formed
by BCBCBC - sequences of hexagonal close packed One of the striking features of the martensitic transforma-
planes in the cubic framework and corresponding to hexagaion of cobalt is the fact that the transformation enthaidy

E. Irreversibility of the latent heat and the intermediate
6-layered structure
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is greater on heating\h"=113 calmol!) than on cooling fcc lattice planes fraction in which platelike nuclei of the hcp

(Ah®=84 calmol!). This was first reported by Adams and phase are coherently inserted into the fcc matrix. In our in-
Altstettef® and confirmed by Munieet al”® who found a  terpretation the modulated structure reflects the closeness to

differenceAh"— Ah®=5 cal molL. Both studies also show @ Stable six-layered phase. An estimate of the location and

that when the number of transformation cycles increades 'ange of stability of this phase in the pressure-temperature
diminishes and the hysteresis width incredSe8 A similar Ph"f‘se d|agr§im O.f cobéttwould require knowleldge. of the
interpretation of this “irreversible” behavior is proposed by I|m!t of stability lines denoted .3N and 4._N n F|g: 3,

] . which have not been determined experimentally in pure
the two groups of searchers: Cycling through the transformaé balt
tion 'T‘duces defects in thﬁ two CCI.OSP‘ packed structures andoIt has to be noted that the modulated structure reported by
the difference found fQAh —A.h is due to the amount of Blaschkoet al22 and confirmed by Babkevitckt al.’?is not
energy needed for their formation. The fact that’ is larger  qymmetric with respect to the fcc and hep structures but cor-
that Ah® is consistent with the property assumed in our de+egponds to a deformation of the fcc structure since the sat-
scription, that the fcc phase is more ordered than the hcgjjite spots are found about th@11) fcc reflections. Note
phase: More energy will be required to create defects in thgso that our proposed interpretation is compatible with a
fcc phase when heating from hcp, than in the hcp phase, oflescription in terms of strain field modulation due to coher-
cooling from fcc. A great part of these symmetry inducedency stresses as suggested in Ref. 23, although the coherency
defects remain in the structures and they influence the folstresses should be due to the coexistendbrekphaseghcp
lowing cycles. This explains the diminishing dafh during  fcc and 6-layered By contrast it differs from the interpreta-
the successive transformation cycles. Note that there is ntion given by Babkevitctet al’ in terms of a nonrandom
contradiction between a decrease/Adi and an increase of segregation of impurity atoms occupying part of the layers,
the region of coexistence of the phases as observed by M@ with that of Mishin and Razumovskiiwho describe the
nier at al.”* sinceAh expresses, in part, the energy requiredmodulation as a pretranslational effect induced by het-
to create new defects the number of which decreases on cgrophase fluctuations.
cling due to saturation. On the other hand the extension of
the hysteresis region should be related to a pinning of an )
increasing number of defects which favors the phase coex- F- The phonon spectrum of cobalt and the elastic anomaly

istence. Investigations of the dynamical properties of cobfaft*
From the values found in Refs. 65 and 74 fah"  have been performed in order to verify the eventual existence
—Ah®=5-30 calmol* a rough estimate of the number of of a soft-mode in connection with the martensitic nature of
stacking faults created in one cycle can be given using théhe transformation and with the suggesffbthat its mecha-
amount of energf~10"* calmol * calculated by Hitzen- nism could be triggered by a small decrease of phonon en-
bergeret al.” necessary to create one stacking fault in hcpergy related to small displacements. No softening behavior
cobalt close to the transformation. One giits 10° stacking  has been found when approaching the transition either from
faults per mole corresponding approximately to one stackinghe hcp(Ref. 19 or fcc (Ref. 17,21 sides. This is consistent
fault every hundred hexagonal planes. with the purely reordering character of the transformation
The enlargement of the hysteresis region on cyclingassumed in our approach since the average atomic positions
across the transformation is consistent with the form of theemain fixed across ordering-type transitions and the jumps
region of coexistence of the hcp and fcc phases shown in thef atoms between the sites are supposed to be uncorrelated.
theoretical phase diagram of FiglaB This region diverges This picture is still reinforced by the reconstructive character
from the N-point enlarging between the lines denoted8  of the transition which as shown in Ref. 64, implies no criti-
and 4—N in the figure. Crossing the preceding lines onecal fluctuations.
goes from the starting martensite to the starting austenite The absence of temperature dependence of the relevant
points denotedM g and Ag in Ref. 74. Further cycling will  phonon branches constitutes, however, only a partial confir-
shift the thermodynamic path towards a larger region of comation of our proposed reordering type mechanism. A more
existence of the phases. Figure 4 in Ref. 74 shows that therecise confirmation of the mechanism can be found in the
width of the hysteresis region increases from abdut Mg frequency dependenae(k) on the reducedk-vector of the
=20°C toA;—M¢=47°C. Therefore in the initial cycles the phonon spectra as it can be used to verify the coincidence of
thermodynamic path is closer to the three-phblspoint at  the structures surrounding the transformation in the direc-
which the six-layered phase Il begins to be stable andions of space preserved by the reconstruction of the lattice,
should cross the region comprised betweenNh line and  i.e., one expects to find a coincidence of the phonon branches
line 3 in Fig. 3a). The MA line represents the limit of sta- for the two structures in these directions and a softening of
bility of phase Il with respect to the fcc phase and line 3, w(k) at special points corresponding to the translational con-
close to theN point is the limit of stability of the fcc and nection of the two structures. Let us show that an indirect
six-layered phase within the hcp phase. Hence the precedirgnfirmation of the underlying existence of a latent polytypic
region should correspond to the modulated structure of aboyghase can be found in the phonon spectra reported for
20°C extension observed by Blaschéwal?® This is consis-  cubict’*#?'and hexagon&i?° cobalt.
tent with the description given by these authors in terms of In order to disclose the structural relationship between the
periodic modulation with a six-layer wavelength of ttid1)  fcc and hcp structures in reciprocal space let us represent the
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connections between the Brillouin-zones of the three fcc, hcp
and L structures. Figures(8), 8(b), and &c) show, respec- 7
tively, the fcc and hcp Brillouin zones and their embedding
within the L-hexagonal Brillouin zone. Figure(® reveals 5
that the coinciding symmetry directions for the three zones C
are’'A =TL.=2T'A, andI’'M_//ITKy//IT'K. where the in- 3
dicesL, c, andh refer to theL, fcc and hcp structures. Fig-
ures 9a) and 9b) show the phonon spectra obtained for the 1

hcp and fcc phases of Co in the preceding directions. Figure e VL
9(c) represents the superposition of the two spectra the full 0.5 0 0.5

circles corresponding to hexagonal coBaknd the open REDUCED WAVE VECTOR

circles to cubic cobaft’*®We can verify the following(i) In

the directionl’A, there is a perfect coincidence for the full  FIG. 9. (8) Phonon spectrum of hexagonal cobalt from Ref. 20.
and open circles which lie on the same phonon branches i) Phonon spectrum of cubic cobalt from Refs. 17,48.Super-
agreement with the doubling of the basic translation in thig?0sition of the two preceding spectra. (@ full and open circles
direction. (ii) Along the TKM reciprocal space direction correspond to hexagonal and cubic cobalt, respectively.

there is a good agreement for two phonon branches, whereas

for the third branch the two structures give different curveswas obtained on pure cobalt while the cubic spectrum was
This discrepancy can be explained by the fact that the exmeasured on Gageyos.'"'® (iii) The crossing of two
periments on fcc and hcp cobalt were performed at temperdsranches at thé&,, point in the hexagonal spectrufirig.
tures differing by about 700 K/*82%and by the observation 9(a)] is related to the fact that at this point two small IRs of
by Freyet al.'® that the slope of this branch increases whenthe C,, point group degenerate in a two-dimensional IR of
the temperature decreases. This explanation is supported iye point grouD 3, . However the crossing &, of the two

the convergence of the two curves when approaching thbranches in the cubic spectrufig. 9b)] despite the fact
transition temperaturdl,,,. Note also that the hexagonal that this point is not at the surface of the fcc Brillouin zone
spectrurd’ constitutes a verification of the existence of thetructure
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sinceK,, coincides[Fig. 9(c)] with the surface poinK, of The ¢’ phase appears below the extrapolation of the
the L structure: AtK}, the cubic structure is reminiscent of paramagnetic-ferromagnetic transition line within fcc-Co. It
the “parent” disordered L structure. indicates that the lowering of energy barrier between the fcc

The phonon spectrum may also serve as a test to cheand hcp structures is favored by the onset of the magnetic
the influence of macroscopic deformations which are in-ordering. Such property can be foreseen by considering the
volved at reconstructive transformation mechanisms as sudmixed free-energy expansion
deformations modify the distance between equivalent sites in
the initial and final structuré.e., they change thmetric of d, d,
the structures The optical phonon curves will thus display F'(TP,s,7,M)=F(T,P,s,n)+ 7M2+ ZM4
shifts with respect to their location in the undeformed struc-
ture whereas acoustic phonon branches undergo changes in S S5
their slopes. In this respect the small dip of the optical +?M2772+ §M2§2, (22)
branch reported by Frest al.}® in the hexagonal phase in the
directionI"A,, at 5(0,0,m/c) on approaching ,,, can be re- where F(T,P,s,7) is the effective order-parameter expan-
lated to the coupling of the primary optical instability to the sion, given by Eq(6) associated with the fcc-hcp transfor-
secondary shear stragy which as noted in Sec. Il Ais re- mation. The remaining terms in E¢R2) express the free-
quired for the formation of the fcc structure. One has effecenergy associated with the onset of the magnetizaoat
tively 5cf =3cf which corresponds to the wave vectof,  the paramagnetic-ferromagnetic transition in fcc Co and the
associated with the —fcc virtual transition. coupling of M with the structural order parameter. Minimi-

The preceding anomalous dip observed in the hcp phassation with respect ttl of F’ provides the equation of state
represents a precursor indication of the shear segine,,
ansmg_spontan_e_ously in the_ fcc_: structure. The_ corresponding M(dy+d,M2+ 8,72+ 8,52) =0 (23)
acoustic instability will consist in a decrease in the slope of
the hexagonal elastic constany,. c,, actually diminishes which yields the equilibrium value d¥l in the ferromagnetic
about 50 K belowT,, from the value 0.X10' to 0.53 state
X 10%2 dyn/cn? at Ty, i.e., AC44/C44=27%. This has been
first observed by Fregt al® and confirmed by Strausst 1
al.?! The elastic constant anomaly is consistent with a dip of (M®)2= — ——(d;+ 8, 7%+ 8552). (24)
the Debye-Waller factor measured by Bokshteiral.”® and d>
with the increase of the internal friction related by Bidaix |ntroducingM® in Eq. (22) gives the renormalized form of
al.®® to shear modes parallel to the hexagonal planes. Thg' at lower order
fact that in our approach no spontaneous strain is needed as a

secondary order-parameter for the formation of the hcp phase 2

is confirmed by the absence of elastic constant anomalies /1 p —F(T.P 5 2 5.2
within the fcc phase on approachifig, and especially of (T.P.s,m) =F(T.P.s,7) 4d, dz( 17"+ 9257)
C'~C13—C1pFCyy. + ... (25

showing that ford,>0 andd;<0 an attractive coupling
(6,<05,<0) decreases the value of F and therefore &ads

Yoo et al” disclosed a high pressure phase in Co identio a reduction of the energy barrier between the fcc and hep
fied as a double hcfidhcp structure. The phase denoted phases.

is stabilized on quenching fcc-Co below 60 GPa but not on
heating hcp-Co. As the region of _Stab'l'ty of the phase_lles H. The transformation mechanisms between the fcc and hcp
between the fcc and hcp phases it suggests an adaptive nature :
. structures in cobalt

for the corresponding structure. The fact that the fcc structure _
is more ordered than the hcp structure explains why an adap- Let us show that the order-parameter symmetries assumed
tive structure is required to go through the-feticp thermo- 1N Sec. Il A for the ordering mechanisms Ieac_ilng to the fcc
dynamic path, i.e., the more defective hcp structure can adaid hep structures allow one to account qualitatively for the
more easily for a direct hepfcc path. The x-ray patterns Observations reported for the fechcp and hcp-fcc trans-
reported fore’ —Co (Figs. 1 and 2 in Ref. J7show that the formations in the series of studies by Karnthaler and his

. . ) . . 3,75,81-84 ;
main Bragg reflections associated with the assumed dh -workeré_ on cobalt and Co-Ni 2"03/5 as well as
structure are surrounded by weak reflections correspondin§" the previously proposed mechanisfis®In Sec. IlA, it
izing a dhcp structure to be surrounded by longer-periodhombohedral structure of symmetB;,(R3m) induced in
polytypes. Note that symmetry consideratidssee Secs. Il the ordering process, which leads to an enlargement of the
and Il E) favor six-layered(thcp) “adaptive” lamellas be- rhombohedral symmetry to cubic. Therefore the—fducp
tween the hcp and fcc structures. This possibility has noand hcp-fcc transformations proceed via an underlying in-
been tested in the structural analysis of #ephase’ termediate structure.

G. The high-pressure double hcp phase
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Half-filled small circles are positionB. The dashed line represents
a glissile Schockley partial dislocation characterized byphBur- ’
gers vector and belonging to the (1@M1hexagonal plane. ’
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As already noted in Sec. IlA th®,— D3y symmetry FIG. 11. (a) Experimental phase diagram of cobalt from Refs.

change ﬁgo”esr’.o”ds o a pseudo-prloger ferroelast|c7,87. The shadowed area corresponds to the region of coexistence
transition”™ at which the spontaneous strasp= €yz couples between the hcp and fcc phasés). Theoretical phase diagram in

bilineary to the primary ordering parameter The shear he (a,b,) plane, associated with the free-energy expansion defined
stresso, conjugated tce, is parallel to the close-packed by Eq.(26). The dotted arrows represent the pressure and tempera-
layers and induces as a secondary effect a deformation coimnire axes in reference to the phase diagram of Figa)11

ciding with the strain componest, between two hexagonal

planes where the atoms are, for exampleAimnd C posi- the order parameter withy, of the form 72c,. Since the

tions. Such deformation results in a stretching of, let say th?)hysical quantity conjugated to, is the stress product
A atoms, which due to the geometrical constraints, produces

. ) o e Txx0y, it may lead again to the coupled straies, ande,,
ajump[lke shifting of the atoms from thek positions to the  \vhich produce the stretching of hexagonal layers and the
B positions as represented in Fig. 10. In this figure one ca

: L X ) o I?esulting partial dislocation shown in Fig. 10. Hence the ato-
see that this §h|ft|.ng give rise to the onset of a gIISSIIemistic mechanism leading to partial dislocations in the hex-
$chockley partial dislocatio(so ca_lled “partial’) character- agonal layers can be only considered as a secondary effect
ized by one among the three equivalent Burgers vegoss ¢ e hcp-fce thermodynamic path. A more consistent for-
the (a,/3)(1100) type whereay, is the hexagonal lattice vec- mation of the hcp-fcc transformation mechanism should be
tor. Note that the onset of a partial in a layer formedAy made in terms of an accumulation of stacking faults nucleat-
atoms does not deform the layer with atomsarpositions,  ing initial fcc lamellas of a few atoms in the hcp phase which
since theA atoms are located in the hollows of tkelayer.  then grow and expand to form the fcc structure. Such mecha-
Only the atoms ofC type located above and below the dis- pism is supported by the faulting disorder found in the hcp
location line can be slightly shiftetbut not necessarilyin  structure(Sec. 11l D) which is essentially symmetry induced
the [111] cubic direction. The row of these out-of-plane at- (antiphase domaihsas discussed in Sec. Il, and does not
oms therefore appears as a nucleus for a dislocation i€the correspond to a random distribution of stacking faults as as-
layer. This process being repeated leads to the growth of agymed by Fujita and Vedhor Pandey and Lel® Note,
hexagonal lamella in the cubic structure. Besides the set ¢f{oyever, that a small amount of disorder in the stacking fault
partials in successive planes appear as a sharp interphaggyribution is predicted in our approach due to the nonmaxi-
front parallel to the (10Q) hexagonal plangi.e., the cubic  ma| character of the ordering parametkr expressed by
(210 plang (Fig. 10. Eq. (10).

The preceding atomistic mechanism is consistent with the
dislocation mechanisms assumed in most models of the fcc-
hep transformatiof!™® and with the direct electron- . Comparison with the experimental phase diagram of cobalt
microscopy observatiof8. An almost similar mechanism
leading to the onset of a partial dislocation in a close-packed Recently two studies have focused on the experimental
hexagonal plane may be invoked for the reversed-hiqt  phase diagram of cob&ft” which is schematized in Fig.
transformation although it is less directly grounded on theli(a). One can see that the hcp phase is embedded within the
corresponding order-parameter symmetry. Th§,—D3,  region of stability of fcc cobalt. When comparing with the
symmetry change is an “improper” ferroelastic transitfon, theoretical phase diagrams of Fig. 3 it clearly appears that
i.e., it corresponds to the spontaneous onset of the elasttbe fourth-degree expansion given by E6) is insufficient
constantc, 4= C,y, as the result of an improper coupling of to account for the experimental features. Figuréoishows
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one of the theoretical phase diagrams associated with thayered structure intermediate between the fcc and hcp struc-
sixth degree expansion in: tures which is stabilized in a region of the phase diagram
close to the disordered polytype regime.
A number of general symmetry arguments have been
F(TP.&,m)=Fo(T,P)+ a1’ +a,+agl*+by 7+ by’ given for explaining the asymmetric features characterizing
+ban®+ci?y? (26)  the transformation in cobalt such as, for examplie,the
asymmetry of the interphase region which has been related to
which differs from the theoretical phase diagram of Fig. 3 bythe property of the fcc and hcp structures to correspond to
the experimental property that the limit of stability line be- distinct subgroup symmetries of the parent disordered phase
tween the hcp and fcc phases is curved toward the hep phagad(ii) the difference in the fce-hcp and hcp-fcc mecha-
as suggested by experimental phase diagram. In order to obisms which have been deduced from the different strains
tain a suitable fitting with the experimental curves one needand couplings involved by the underlying rhombohedral
to take into account a linear dependence of three coefficiensiructure. However, the asymmetry of the thermodynamic
(a;,a,, and b;) on temperature and pressure. The phasécc— hcp paths seems to be more enhanced in cobalt due to
diagram shown in Fig. 1b) assumesb;>0 and Al:bg the specific property of the fcc and hcp structures in this
—3b,b;>0. A more precise quantitative modetith deter- ~ €lement to display a different degree of order. This property
mined numerical values of the coefficientsould require  results, for example, in different transformation enthalpies

more experimental points for the phase boundaries. for the two paths which is not a general feature of the fcc-hcp
transformation.

In a recent study devoted to the phase transformations in
lithium and sodiurf® the properties characterizing recon-

The present work deals with a general phenomenologica‘?trUC“Ve ma}rtensitic transformations of the displacivg type
description of the transformation between the fcc and hcpvere underlined. From the present study one can verify that
structures which is applied to the illustrative example of co-réconstructive martensitic transformations induced by a reor-
balt. The following results are independent from the specificdering mechanism present drastically different theoretical
situation found in cobalt. features, namely(1) the parent phasge.g., the bcc phase in

(1) The fcc and hep structures can be described as resylki @and Na is adjacent to the transformation in the displgcive
ing from different ordering mechanisms from a disorderedcaseé whereas the parent polytypic structure does not in gen-
polytypic structure. Within the segregation process leading t&ral. correspond to a definite region of the phase diagram for
the formation of close-packed structures from the melt thd€ordering martensitic transformatiortg) Although second-
fcc and hep structures are assumed to order progressively vy SPontaneous strains are required in both types of trans-
a periodic array of stacked domains in which lamellas of thformations they play an essential role in the symmetry break-
ordered structures are surrounded by disordered sequences®d mechanism leading to displacive martensites whereas
hexagonal layers. On approaching the fully ordered states tH8eY only take part to the transformation kinetics in the reor-
fraction of disordered polytype sequences reduces in eac#ring mechanisn(3) The precursor effects show important
domain increasing the thickness of the lamellas, and simudifferences. A slight softening of the phonon mode associ-
taneously the neighboring domains coalesce. The direct réted with the order parameter can be observed on approach-
constructive reordering mechanism between the fcc and hdfpd displacive martensitic transformations while no softening
structure involves an underlying rhombohedral intermediat®Cccurs for reordering type martensitic transformations. Con-
structure which produces in both the fehicp and hcp vers_ely a nuclea'_uon_ process is hardly ewdenced_m the dis-
—fec thermodynamic paths a shear strejp giving rise to placwe_case wh|le. it is clearly observdthmellag in t.he
glissile partial dislocations acting as nuclei for the formation"€0rdering mechanism. There is however, an essential com-
of hcp and fec lamellas. Note that these pretransitional lameldon theoretical property of the phases surrounding displa-
las are different in origin and nature from the lamellas in-CIV€ OF reordering martensitic transformations of the recon-

voked in the segregation process of the close packed struglructive type. In both cases the phases coincide with limit
tures. states which result either from fixed critical displacements

(2) The preceding picture of the fcc-hep transformation (@nd fixeq_critical strgir’)sor from definite_crystallogeometri—
has to be completed by the property of the two structures t§al conditions, required for the formation of close packed
be intrinsically faulted due to symmetry induced antiphaseStructures.
and orientational domains. There are also temperature depen-
dent stacking faults which originate in the nonmaximal char-
acter of the order-parameter inherent to the assumed ordering
mechanism. We are grateful to Dr. T. Waitz and Professor H. P. Karn-

(3) Other general properties of the fcc-hcp transformationthaler for helpful discussions on the mechanism of the fcc-
which result from the reconstructive and ordering characterticp and hcp-fcc transformations, to S. B. Rochal for allow-
of this transformation aréi) the absence of soft mode be- ing reproduction of Fig. 3 and to the Swiss National Science
havior which does not exclude the softening of elastic con+oundation for financial support. The work was partly sup-
stants related to secondary straifig. The typical § -shaped ported by the Fonds zur Forderung der wissenschaftlichen
anomaly of the specific heafiii) The existence of a six- Forschung in Austria.

V. SUMMARY AND CONCLUSION

ACKNOWLEDGMENTS

144104-15



TOLEDANO, KREXNER, PREM, WEBER, AND DMITRIEV

APPENDIX

Generators of the 22 matrices forming the IR (k7s)
associated with th®g,— D, (VX 6) (L—hcp) transition
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